• Neuroscience · Sep 2014

    Small-animal repetitive transcranial magnetic stimulation combined with [¹⁸F]-FDG microPET to quantify the neuromodulation effect in the rat brain.

    • J Parthoens, J Verhaeghe, T Wyckhuys, S Stroobants, and S Staelens.
    • Molecular Imaging Center Antwerp, Universiteitsplein 1 - 2610 Wilrijk, University of Antwerp, Antwerp, Belgium.
    • Neuroscience. 2014 Sep 5;275:436-43.

    AbstractRepetitive transcranial magnetic stimulation (rTMS) is a non-invasive neurostimulation technique for the treatment of various neurological and psychiatric disorders. To investigate the working mechanism of this treatment approach, we designed a small-animal coil for dedicated use in rats and we combined this neurostimulation method with small-animal positron emission tomography (microPET or μPET) to quantify regional 2-deoxy-2-((18)F)fluoro-d-glucose ([(18)F]-FDG) uptake in the rat brain, elicited by a low- (1 Hz) and a high- (50 Hz) frequency paradigm. Rats (n=6) were injected with 1 mCi of [(18)F]-FDG 10 min after the start of 30 min of stimulation (1 Hz, 50 Hz or sham), followed by a 20-min μPET image acquisition. Voxel-based statistical parametric mapping (SPM) image analysis of 1-Hz and 50-Hz versus sham stimulation was performed. For both the 1-Hz and 50-Hz paradigms we found a large [(18)F]-FDG hypermetabolic cluster (2.208 mm(3) and 2.616 mm(3), resp.) (analysis of variance (ANOVA), p<0.05) located in the dentate gyrus complemented with an additional [(18)F]-FDG hypermetabolic cluster (ANOVA, p<0.05) located in the entorhinal cortex (2.216 mm(3)) for the 50-Hz stimulation. The effect on [(18)F]-FDG metabolism was 2.9 ± 0.8% at 1 Hz and 2.5 ± 0.8% at 50 Hz for the dentate gyrus clusters and 3.3 ± 0.5% for the additional cluster in the entorhinal cortex at 50 Hz. The maximal (4.19 vs. 2.58) and averaged (2.87 vs. 2.21) T-values are higher for 50 Hz versus 1 Hz. This experimental study demonstrates the feasibility to combine μPET imaging in rats stimulated with rTMS using a custom-made small-animal magnetic stimulation setup to quantify changes in the cerebral [(18)F]-FDG uptake as a measure for neuronal activity.Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.