• Neuroscience · May 2019

    Functional Effects of Cuprizone-Induced Demyelination in the Presence of the mTOR-Inhibitor Rapamycin.

    • Hana Yamate-Morgan, Kelli Lauderdale, Joshua Horeczko, Urja Merchant, and Seema K Tiwari-Woodruff.
    • Department of Neuroscience, University of California, Riverside (UCR), Riverside, CA 92521, USA; Division of Biomedical Sciences, UCR School of Medicine, Riverside, CA 92521, USA.
    • Neuroscience. 2019 May 15; 406: 667683667-683.

    AbstractPersistent demyelination has been implicated in axon damage and functional deficits underlying neurodegenerative diseases such as multiple sclerosis. The cuprizone diet model of demyelination allows for the investigation of mechanisms underlying timed and reproducible demyelination and remyelination. However, spontaneous oligodendrocyte (OL) progenitor (OPC) proliferation, OPC differentiation, and axon remyelination during cuprizone diet may convolute the understanding of remyelinating events. The Akt (a serine/threonine kinase)/mTOR (the mammalian target of rapamycin) signaling pathway in OLs regulates intermediate steps during myelination. Thus, in an effort to inhibit spontaneous remyelination, the mTOR inhibitor rapamycin has been administered during cuprizone diet. Intrigued by the potential for rapamycin to optimize the cuprizone model by producing more complete demyelination, we sought to characterize the effects of rapamycin on axonal function and myelination. Functional remyelination was assessed by callosal compound action potential (CAP) recordings along with immunohistochemistry in mice treated with rapamycin during cuprizone diet. Rapamycin groups exhibited similar myelination, but significantly increased axonal damage and inflammation compared to non-rapamycin groups. There was minimal change in CAP amplitude between groups, however, a significant decrease in conduction velocity of the slower, non-myelinated CAP component was observed in the rapamycin group relative to the non-rapamycin group. During remyelination, rapamycin groups showed a significant decrease in OPC proliferation and mature OLs, suggesting a delay in OPC differentiation kinetics. In conclusion, we question the use of rapamycin to produce consistent demyelination as rapamycin increased inflammation and axonal damage, without affecting myelination.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.