• Neuroscience · Sep 2014

    Genetic deletion of MT₁/MT₂ melatonin receptors enhances murine cognitive and motor performance.

    • G O'Neal-Moffitt, J Pilli, S S Kumar, and J Olcese.
    • Florida State University Program in Neuroscience, College of Medicine, Department of Biomedical Sciences, 1115 West Call Street, Tallahassee, FL 32306, USA. Electronic address: gmoffitt@neuro.fsu.edu.
    • Neuroscience. 2014 Sep 26; 277: 506-21.

    AbstractMelatonin, an indoleamine hormone secreted into circulation at night primarily by the brain's pineal gland, has been shown to have a wide variety of actions on the development and physiology of neurons in the CNS. Acting via two G-protein-coupled membrane receptors (MT1 and MT2), melatonin modulates neurogenesis, synaptic functions, neuronal cytoskeleton and gene expression. In the present studies, we sought to characterize the behavior and neuronal biology of transgenic mice lacking both of these melatonin receptors as a way to understand the hormone's receptor versus non-receptor-mediated actions in CNS-dependent activities, such as learning and memory, anxiety, general motor performance and circadian rhythmicity. Assessment of these behaviors was complemented by molecular analyses of gene expression in the brain. Our results demonstrate mild behavioral hyperactivity and a lengthened circadian period of free-running motor activity in melatonin receptor-deficient mice as compared to receptor-intact control mice beginning at an early age. Significant improvement in cognitive performance was found using the Barnes Maze and the Y-Maze. No behavioral changes in anxiety levels were found. Electrophysiological measures in hippocampal slices revealed a clear enhancement of long-term potentiation in mice lacking melatonin receptors with no significant differences in paired-pulse facilitation. Quantitative analysis of brain protein expression levels of phosphoCREB and phosphoERK1/2 and key markers of synaptic activity (synapsin, glutamate receptor 1, spinophilin, and glutamic acid decarboxylase 1) revealed significant differences between the double-knockout and wild-type animals, consistent with the behavioral findings. Thus, genetic deletion of melatonin receptors produces mice with enhanced cognitive and motor performance, supporting the view that these receptors play an important role in neurobehavioral development. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…