• Neuroscience · Sep 2014

    Modeling chronic brain exposure to amphetamines using primary rat neuronal cortical cultures.

    • T B Nogueira, S da Costa Araújo, F Carvalho, F C Pereira, E Fernandes, M L Bastos, V M Costa, and J P Capela.
    • REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
    • Neuroscience. 2014 Sep 26;277:417-34.

    AbstractAmphetamine-type psychostimulants (ATS) are used worldwide by millions of patients for several psychiatric disorders. Amphetamine (AMPH) and "ecstasy" (3,4-methylenedioxymethamphetamine or MDMA) are common drugs of abuse. The impact of chronic ATS exposure to neurons and brain aging is still undisclosed. Current neuronal culture paradigms are designed to access acute ATS toxicity. We report for the first time a model of chronic exposure to AMPH and MDMA using long-term rat cortical cultures. In two paradigms, ATS were applied to neurons at day 1 in vitro (DIV) (0, 1, 10 and 100 μM of each drug) up to 28 days (200 μM was applied to cultures up to 14 DIV). Our reincubation protocol assured no decrease in the neuronal media's drug concentration. Chronic exposure of neurons to concentrations equal to or above 100 μM of ATS up to 28 DIV promoted significant mitochondrial dysfunction and elicited neuronal death, which was not prevented by glutamate receptor antagonists at 14 DIV. ATS failed to promote accelerated senescence as no increase in β-galactosidase activity at 21 DIV was found. In younger cultures (4 or 8 DIV), AMPH promoted mitochondrial dysfunction and neuronal death earlier than MDMA. Overall, AMPH proved more toxic and was the only drug that decreased intraneuronal glutathione levels. Meanwhile, caspase 3 activity increased for either drug at 200 μM in younger cultures at 8 DIV, but not at 14 DIV. At 8 DIV, ATS promoted a significant change in the percentage of neurons and astroglia present in culture, promoting a global decrease in the number of both cells. Importantly, concentrations equal to or below 10 μM of either drug did not promote neuronal death or oxidative stress. Our paradigm of neuronal cultures long-term exposure to low micromolar concentrations of ATS closely reproduces the in vivo scenario, being valuable to study the chronic impact of ATS.Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.