-
- V Cerpa, A Gonzalez, and G B Richerson.
- Department of Neurology, Yale University, New Haven, CT 06520, United States; Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, United States; Department of Neurology, University of Iowa, Iowa City, IA 52242, United States; Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA 52242, United States; Departamento de Fisiología, Facultad de Medicina, Universidad del Desarrollo, Santiago 8320000, Chile.
- Neuroscience. 2014 Oct 24; 279: 65-76.
AbstractIn genetically-modified Lmx1b(f/f/p) mice, selective deletion of LMX1B in Pet-1 expressing cells leads to failure of embryonic development of serotonin (5-HT) neurons. As adults, these mice have a decreased hypercapnic ventilatory response and abnormal thermoregulation. This mouse model has been valuable in defining the normal role of 5-HT neurons, but it is possible that developmental compensation reduces the severity of observed deficits. Here we studied mice genetically modified to express diphtheria toxin receptors (DTR) on Pet-1 expressing neurons (Pet-1-Cre/floxed DTR or Pet1/DTR mice). These mice developed with a normal complement of 5-HT neurons. As adults, systemic treatment with 2-35μg of diphtheria toxin (DT) reduced the number of tryptophan hydroxylase-immunoreactive (TpOH-ir) neurons in the raphe nuclei and ventrolateral medulla by 80%. There were no effects of DT on minute ventilation (VE) or the ventilatory response to hypercapnia or hypoxia. At an ambient temperature (TA) of 24°C, all Pet1/DTR mice dropped their body temperature (TB) below 35°C after DT treatment, but the latency was shorter in males than females (3.0±0.37 vs. 4.57±0.29days, respectively; p<0.001). One week after DT treatment, mice were challenged by dropping TA from 37°C to 24°C, which caused TB to decrease more in males than in females (29.7±0.31°C vs. 33.0±1.3°C, p<0.01). We conclude that the 20% of 5-HT neurons that remain after DT treatment in Pet1/DTR mice are sufficient to maintain normal baseline breathing and a normal response to CO2, while those affected include some essential for thermoregulation, in males more than females. In comparison to models with deficient embryonic development of 5-HT neurons, acute deletion of 5-HT neurons in adults leads to a greater defect in thermoregulation, suggesting that significant developmental compensation can occur. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.