• Neuroscience · Apr 2018

    Differential Spinal and Supraspinal Activation of Glia in a Rat Model of Morphine Tolerance.

    • Viljami Jokinen, Yulia Sidorova, Hanna Viisanen, Ilida Suleymanova, Henna Tiilikainen, Zhilin Li, Tuomas O Lilius, Kert Mätlik, Jenni E Anttila, Mikko Airavaara, Li Tian, Pekka V Rauhala, and Eija A Kalso.
    • Department of Pharmacology, Faculty of Medicine, Haartmaninkatu 8 (Biomedicum), 00014 University of Helsinki, Helsinki, Finland. Electronic address: viljami.jokinen@helsinki.fi.
    • Neuroscience. 2018 Apr 1; 375: 10-24.

    AbstractDevelopment of tolerance is a well known pharmacological characteristic of opioids and a major clinical problem. In addition to the known neuronal mechanisms of opioid tolerance, activation of glia has emerged as a potentially significant new mechanism. We studied activation of microglia and astrocytes in morphine tolerance and opioid-induced hyperalgesia in rats using immunohistochemistry, flow cytometry and RNA sequencing in spinal- and supraspinal regions. Chronic morphine treatment that induced tolerance and hyperalgesia also increased immunoreactivity of spinal microglia in the dorsal and ventral horns. Flow cytometry demonstrated that morphine treatment increased the proportion of M2-polarized spinal microglia, but failed to impact the number or the proportion of M1-polarized microglia. In the transcriptome of microglial cells isolated from the spinal cord (SC), morphine treatment increased transcripts related to cell activation and defense response. In the studied brain regions, no activation of microglia or astrocytes was detected by immunohistochemistry, except for a decrease in the number of microglial cells in the substantia nigra. In flow cytometry, morphine caused a decrease in the number of microglial cells in the medulla, but otherwise no change was detected for the count or the proportion of M1- and M2-polarized microglia in the medulla or sensory cortex. No evidence for the activation of glia in the brain was seen. Our results suggest that glial activation associated with opioid tolerance and opioid-induced hyperalgesia occurs mainly at the spinal level. The transcriptome data suggest that the microglial activation pattern after chronic morphine treatment has similarities with that of neuropathic pain.Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…