• Neuroscience · Apr 2018

    Quantitative Proteomic Analysis Reveals Synaptic Dysfunction in the Amygdala of Rats Susceptible to Chronic Mild Stress.

    • Mi Zhou, Zhao Liu, Jia Yu, Shuiming Li, Min Tang, Li Zeng, Haiyang Wang, Hong Xie, Li Peng, Haojun Huang, Chanjuan Zhou, Peng Xie, and Jian Zhou.
    • Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China.
    • Neuroscience. 2018 Apr 15; 376: 24-39.

    AbstractThe amygdala plays a key role in the pathophysiology of depression, but the molecular mechanisms underlying amygdalar hyperactivity in depression remain unclear. In this study, we used a chronic mild stress (CMS) protocol to separate susceptible and insusceptible rat subgroups. Proteomes in the amygdalae were analyzed differentially across subgroups based on labeling with isobaric tags for relative and absolute quantitation (iTRAQ) combined with mass spectrometry. Of 2562 quantified proteins, 102 were differentially expressed. Several proteins that might be associated with the stress insusceptibility/susceptibility difference, including synapse-related proteins, were identified in the amygdala. Immunoblot analysis identified changes in VGluT1, NMDA GluN2A and GluN2B and AMPA GluA1 receptors, and PSD-95, suggesting that CMS perturbs glutamatergic transmission in the amygdala. Changes in these regulatory and structural proteins provide insight into the molecular mechanisms underlying the abnormal synaptic morphological and functional plasticity in the amygdalae of stress-susceptible rats. Interestingly, the expression level of CaMKIIβ, potentially involved in regulation of glutamatergic transmission, was significantly increased in the susceptible group. Subsequent in vitro experimentation showed that overexpression of CaMKIIβ increased the expression of PSD-95 and GluA1 in cultured hippocampal neurons. This result suggested that CaMKIIβ functions upstream from PSD-95 and GluA1 to affect LTP-based postsynaptic functional plasticity in the amygdalae of susceptible rats. Therefore, amygdalar CaMKIIβ is a potential antidepressant target. Collectively, our findings contribute to a better understanding of amygdalar synaptic plasticity in depression.Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.