• Neuroscience · Apr 2019

    Divergent Response to Cannabinoid Receptor Stimulation in High and Low Stress-Induced Analgesia Mouse Lines Is Associated with Differential G-Protein Activation.

    • Anna Lesniak, Diana Chmielewska, Piotr Poznanski, Magdalena Bujalska-Zadrozny, Joanna Strzemecka, and Mariusz Sacharczuk.
    • Faculty of Pharmacy with the Laboratory Medicine Division, Department of Pharmacodynamics, Medical University of Warsaw, Centre for Preclinical Research and Technology, Warsaw, Poland. Electronic address: anna.lesniak@wum.edu.pl.
    • Neuroscience. 2019 Apr 15; 404: 246-258.

    AbstractBidirectional selection of mice for high (HA) and low (LA) swim stress-induced analgesia (SSIA) is associated with a divergent response to opioids. In the current study, we investigated whether the genetic divergence in opioid system activity between HA and LA mice also affects cannabinoid sensitivity. Additionally, we also investigated whether the endocannabinoid system mediates SSIA in these lines. Numerous reports support the existence of pharmacological and molecular interactions between the opioid and cannabinoid systems along the pain pathways, as both systems utilize the same G-protein subtype for signal transduction. Mice from both lines were treated with a non-selective CB1/CB2 agonist, WIN55,212-2 and their behavior was evaluated according to the tetrad paradigm assessing antinociception, catalepsy, hypothermia and locomotor activity. Surprisingly, the engagement of CB1 receptors in SSIA was not confirmed. G-protein activation was studied in different brain regions and the spinal cord in the [35S]GTPγS assay. It was shown that WIN55,212-2 produced more potent antinociception in HA than in LA mice. Also, HA mice displayed stronger cannabinoid-induced catalepsy in the bar test. However, LA mice were more sensitive to the hypothermic effect of WIN55,212-2. The intensity of behavioral responses to WIN55,212-2 was correlated with increased G-protein activation in the periaqueductal gray matter, frontal cortex, striatum and thalamus in HA mice. A weak response to WIN55,212-2 in LA mice could depend on impaired CB2 receptor signaling. In conclusion, differences in both opioid and cannabinoid sensitivity between HA and LA mice could stem from alterations in intracellular second messenger mechanisms involving G-protein activation.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.