-
- Jing Ren, Jing Xiang, Yueqiu Chen, Feng Li, Ting Wu, and Jingping Shi.
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
- J Headache Pain. 2019 Jan 9; 20 (1): 3.
BackgroundAlthough altered neural networks have been demonstrated in recent MEG (magnetoencephalography) research in migraine patients during resting state, it is unknown whether this alteration can be detected in task-related networks. The present study aimed to investigate the abnormalities of the frequency-specific somatosensory-related network in migraine patients by using MEG.MethodsTwenty-two migraineurs in the interictal phase and twenty-two sex- and age-matched healthy volunteers were studied using a whole-head magnetoencephalography (MEG) system. Electrical stimuli were delivered alternately to the median nerve on the right wrists of all subjects. MEG data were analyzed in a frequency range of 1-1000 Hz in multiple bands.ResultsThe brain network patterns revealed that the patients with migraine exhibited remarkably increased functional connectivity in the high-frequency (250-1000 Hz) band between the sensory cortex and the frontal lobe. The results of quantitative analysis of graph theory showed that the patients had (1) an increased degree of connectivity in the theta (4-8 Hz), beta (13-30 Hz) and gamma (30-80 Hz) bands; (2) an increased connectivity strength in the beta (13-30 Hz) and gamma (30-80 Hz) bands; (3) an increased path length in the beta (13-30 Hz), gamma (30-80 Hz) and ripple (80-250 Hz) bands; and (4) an increased clustering coefficient in the theta (4-8 Hz), beta (13-30 Hz) and gamma (30-80 Hz) bands.ConclusionsThe results indicate that migraine is associated with aberrant connections from the somatosensory cortex to the frontal lobe. The frequency-specific increases in connectivity in terms of strength, path length and clustering coefficients support the notion that migraineurs have elevated cortical networks. This alteration in functional connectivity may be involved in somatosensory processing in migraine patients and may contribute to understanding migraine pathophysiology and to providing convincing evidence for a spatially targeted migraine therapy.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.