• Neuroscience · Nov 2014

    Review

    Protein trafficking from synapse to nucleus in control of activity-dependent gene expression.

    • R Kaushik, K M Grochowska, I Butnaru, and M R Kreutz.
    • Neuroplasticity Research Group, Leibniz Institute for Neurobiology, Magdeburg, Germany.
    • Neuroscience. 2014 Nov 7;280:340-50.

    AbstractLong-lasting changes in neuronal excitability require activity-dependent gene expression and therefore the transduction of synaptic signals to the nucleus. Synaptic activity is rapidly relayed to the nucleus by membrane depolarization and the propagation of Ca(2+)-waves. However, it is unlikely that Ca(2+)-transients alone can explain the specific genomic response to the plethora of extracellular stimuli that control gene expression. In recent years a steadily growing number of studies report the transport of proteins from synapse to nucleus. Potential mechanisms for active retrograde transport and nuclear targets for these proteins have been identified and recent reports assigned first functions to this type of long-distance signaling. In this review we will discuss how the dissociation of synapto-nuclear protein messenger from synaptic and extrasynaptic sites, their transport, nuclear import and the subsequent genomic response relate to the prevailing concept behind this signaling mechanism, the encoding of signals at their site of origin and their decoding in the nucleus.Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…