• Neuroscience · May 2019

    Promising Neuroprotective Function for M2 Microglia in Kainic Acid-Induced Neurotoxicity Via the Down-Regulation of NF-κB and Caspase 3 Signaling Pathways.

    • Tingting Yu, Hong Yu, Bo Zhang, Dan Wang, Bo Li, Jie Zhu, and Wei Zhu.
    • Department of Otolaryngology, Head and Neck Surgery, the First Hospital, Jilin University, Changchun, China; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
    • Neuroscience. 2019 May 15; 406: 86-96.

    AbstractActivated microglia have two functional states (M1 and M2) which play dual roles in neurodegenerative diseases. In the present study, we explored a possible neuroprotective function of M2 microglia against kainic acid (KA)-induced neurodegeneration in primary neurons co-cultured with different microglial populations. Neurons were isolated from the hippocampi and cortices of C57BL/6 embryos (embryonic day 16) and microglia were extracted from neonatal pups (postnatal days 0-2). Microglia were either unstimulated (M0-phenotype) or stimulated with lipopolysaccharide and interferon-γ to form the M1-phenotype, or with interleukin (IL)-4, IL-10, and transforming growth factor -β for the M2-phenotype. Neurons were co-cultured with each of the three microglial phenotypes and treated with KA for 24 h. Next, we analyzed the cell survival rate, nitric oxide (NO) levels, and lactate dehydrogenase production, cytokines levels, and expression of nuclear factor κB (NF-κB) and caspase 3 among the three groups before and after KA insult. Our results indicated that M2 microglia played a neuroprotective role in KA-induced neurotoxicity, as demonstrated by high neuronal survival as well as decreased production of NO and pro-inflammatory cytokines. In contrast, neurons co-cultured with M1 microglia exhibited the lowest survival rate as well as increased levels of NO and pro-inflammatory cytokines. Further, the expression of NF-κB and caspase 3 were significantly decreased in M2 microglia co-cultures compared to M1 or M0 microglia co-cultures after KA insult. Therefore, M2 microglia may exert a neuroprotective function in KA-induced neurotoxicity via the down-regulation of NF-κB and caspase 3 signaling pathways.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…