• Neuroscience · May 2019

    The Effects of Astrocyte and Oligodendrocyte Lineage Cell Interaction on White Matter Injury under Chronic Cerebral Hypoperfusion.

    • Shunsuke Magami, Nobukazu Miyamoto, Yuji Ueno, Kenichiro Hira, Ryota Tanaka, Kazuo Yamashiro, Hidenori Oishi, Hajime Arai, Takao Urabe, and Nobutaka Hattori.
    • Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan.
    • Neuroscience. 2019 May 15; 406: 167-175.

    AbstractOligodendrocytes (OLGs) differentiate from oligodendrocyte-precursor-cells (OPCs) for myelination in white matter. This differentiation is maintained by cell-cell interactions through trophic factors such as brain-derived-neurotrophic-factor (BDNF). However, differentiation is impaired when white matter injury occurs in a chronic cerebral hypoperfusion model. Thus, we examined the effects of the interaction between astrocyte and oligodendrocyte lineage cells on myelination regarding the mechanism of impairment. A microcoil was applied to the bilateral common carotid arteries in male C57BL/6 mice as an in vivo cerebral chronic hypoperfusion model (BCAS model). A nonlethal concentration of CoCl2 was added to the primary cell culture from the postnatal rat cortex and incubated in vitro. White matter injury progressed in the BCAS model as myelin decreased. The numbers of OPCs and astrocytes increased after the operation, whereas that of OLGs decreased at day 28. BDNF continuously decreased until day 28. Differentiation was disrupted under the stressed conditions in the cell culture, but improved after administration of astrocyte-conditioned medium containing BDNF. Astrocytes with BDNF underwent differentiation, but differentiation was impaired under the stressed conditions due to the reduction of BDNF. We examined S100B regarding the mechanism of impairment. S100B is mainly expressed by mature astrocytes, and has neuroprotective and neurotoxic effects inside and outside of cells. GFAP-positive astrocytes increased in the corpus callosum in the BCAS model, whereas the number of mature astrocytes continued to decrease, resulting in reduced BDNF. The reduction in mature astrocytes due to the discharge of S100B in ischemic conditions caused the reduction in BDNF.Copyright © 2019 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…