• Neuroscience · May 2019

    Ca2+ Channels Involvement in Low-Frequency Stimulation-Mediated Suppression of Intrinsic Excitability of Hippocampal CA1 Pyramidal Cells in a Rat Amygdala Kindling Model.

    • Zohreh Ghotbeddin, Soomaayeh Heysieattalab, Mehdi Borjkhani, Javad Mirnajafi-Zadeh, Saeed Semnanian, Narges Hosseinmardi, and Mahyar Janahmadi.
    • Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Physiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
    • Neuroscience. 2019 May 15; 406: 234-248.

    AbstractLow-frequency stimulation has demonstrated promising seizure suppression in animal models of epilepsy, while the mechanism of the effect is still debated. Changes in intrinsic properties have been recognized as a prominent pathophysiologically relevant feature of numerous neurological disorders including epilepsy. Here, it was evaluated whether LFS can preserve the intrinsic neuronal electrophysiological properties in a rat model of epilepsy, focusing on the possible involvement of voltage-gated Ca2+ channels. The amygdala kindling model was induced by 3 s monophasic square wave pulses (50 Hz, 1 ms duration, 12times/day at 5 min intervals). Both LFS alone and kindled plus LFS (KLFS) groups received four packages of LFS (each consisting of 200 monophasic square pulses, 0.1 ms pulse duration at 1 Hz with the after discharge threshold intensity), which in KLFS rats was applied immediately after kindling induction. Whole-cell patch-clamp recordings were made in the presence of fast synaptic blockers 24 h after the last kindling stimulations or following kindling stimulations plus LFS application. In the KLFS group, both the rebound excitation and kindling-induced intrinsic hyperexcitability were decreased, associated with a regular intrinsic firing as indicated by a lower coefficient of variation. The amplitude of afterdepolarization (ADP) and its area under the curve were both decreased in the KLFS group compared to the kindled group. LFS prevented the increasing effect of kindling on Ca2+ currents in the KLFS group. Findings provided evidence for a novel form of epileptiform activity suppression by LFS in the presence of synaptic blockade possibly by decreasing Ca2+ currents.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…