-
- Dongxiao Zhou, Xurui Huang, Ying Xie, Zhezhi Deng, Junjie Guo, and Haiwei Huang.
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
- Neuroscience. 2019 Jun 1; 408: 14-21.
AbstractOverexpression of vascular endothelial growth factor (VEGF) is considered the most critical factor in radiation-induced brain injury (RBI). To investigate the role of VEGF and the mechanism underlying microvascular damage in RBI, wild type mice, and transgenic mice overexpressing VEGF derived from astrocytes, were separately and randomly exposed to whole-brain or sham irradiation. Pathophysiologic changes in the brain tissue were detected 90 days after irradiation. Compared with wild type mice, the secretion of VEGF and angiopoietin-2 (Ang-2) was up-regulated in transgenic mice, whether irradiated or not, while elevated expression of VEGF, Ang-2, and glial fibrillary acidic protein (GFAP) was detected after whole-brain irradiation using western blotting. Impairment of the blood-brain barrier (BBB) was demonstrated by the leakage of dyes observed using two-photon imaging and decreased expression of zonula occludens-1 (ZO-1) and Occludin. Hematoxylin-eosin (HE) staining revealed obvious structural damage in the irradiated brains. Furthermore, damage to the BBB and histopathology in the transgenic mice were worse than those of wild type mice in the irradiated groups. There was a positive correlation among VEGF and Ang-2 expression and RBI severity. These data reveal that VEGF and Ang-2 expression is closely associated with the microvascular injury in RBI. Further, overexpression of VEGF can cause up-regulation of Ang-2 and exacerbation of RBI. Therefore, Ang-2 might be the cytokine that acts as a mediator between VEGF and microvascular injury, and is likely a new intervention target for RBI.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.