• Neuroscience · Feb 2015

    Appetitive associative learning recruits a distinct network with cortical, striatal, and hypothalamic regions.

    • S Cole, M P Hobin, and G D Petrovich.
    • Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA.
    • Neuroscience. 2015 Feb 12; 286: 187202187-202.

    AbstractThe amygdala, prefrontal cortex, striatum and other connected forebrain areas are important for reward-associated learning and subsequent behaviors. How these structurally and functionally dissociable regions are recruited during initial learning, however, is unclear. Recently, we showed amygdalar nuclei were differentially recruited across different stages of cue-food associations in a Pavlovian conditioning paradigm. Here, we systematically examined Fos induction in the forebrain, including areas associated with the amygdala, during early (day 1) and late (day 10) training sessions of cue-food conditioning. During training, rats in the conditioned group received tone-food pairings, while controls received presentations of the tone alone in the conditioning chamber followed by food delivery in their home cage. We found that a small subset of telencephalic and hypothalamic regions were differentially recruited during the early and late stages of training, suggesting evidence of learning-induced plasticity. Initial tone-food pairings recruited solely the amygdala, while late tone-food pairings came to induce Fos in distinct areas within the medial and lateral prefrontal cortex, the dorsal striatum, and the hypothalamus (lateral hypothalamus and paraventricular nucleus). Furthermore, within the perifornical lateral hypothalamus, tone-food pairings selectively recruited neurons that produce the orexigenic neuropeptide orexin/hypocretin. These data show a functional map of the forebrain areas recruited by appetitive associative learning and dependent on experience. These selectively activated regions include interconnected prefrontal, striatal, and hypothalamic regions that form a discrete but distributed network that is well placed to simultaneously inform cortical (cognitive) processing and behavioral (motivational) control during cue-food learning.Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…