• J. Comp. Neurol. · Apr 2001

    Hippocampal dependent learning ability correlates with N-methyl-D-aspartate (NMDA) receptor levels in CA3 neurons of young and aged rats.

    • M M Adams, T D Smith, D Moga, M Gallagher, Y Wang, B B Wolfe, P R Rapp, and J H Morrison.
    • Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, New York, NY 10029-6574, USA.
    • J. Comp. Neurol. 2001 Apr 2; 432 (2): 230-43.

    AbstractHippocampal N-methyl-D-Aspartate (NMDA) receptors mediate mechanisms of cellular plasticity critical for spatial learning in rats. The present study examined the relationship between spatial learning and NMDA receptor expression in discrete neuronal populations, as well as the degree to which putative age-related changes in NMDA receptors are coupled to the effects of normal aging on spatial learning. Young and aged Long-Evans rats were tested in a Morris water maze task that depends on the integrity of the hippocampus. Levels of NR1, the obligatory subunit for a functional NMDA receptor, were subsequently quantified both biochemically by Western blot in whole homogenized hippocampus, and immunocytochemically by using a high-resolution confocal laser scanning microscopy method. The latter approach allowed comprehensive, regional analysis of discrete elements of excitatory hippocampal circuitry. Neither method revealed global changes, nor were there region-specific differences in hippocampal NR1 levels between young and aged animals. However, across all subjects, individual differences in spatial learning ability correlated with NR1 immunofluorescence levels selectively in CA3 neurons of the hippocampus. Parallel confocal microscopic analysis of the GluR2 subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptor failed to reveal reliable differences as a function of age or spatial learning ability. This analysis linking age, performance, and NR1 levels demonstrates that although dendritic NR1 is generally preserved in the aged rat hippocampus, levels of this receptor subunit in selective elements of hippocampal circuitry are linked to spatial learning. These findings suggest that NMDA receptor abundance in CA3 bears a critical relationship to learning mediated by the hippocampus throughout the life span.Copyright 2001 Wiley-Liss, Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.