The Journal of comparative neurology
-
Hippocampal N-methyl-D-Aspartate (NMDA) receptors mediate mechanisms of cellular plasticity critical for spatial learning in rats. The present study examined the relationship between spatial learning and NMDA receptor expression in discrete neuronal populations, as well as the degree to which putative age-related changes in NMDA receptors are coupled to the effects of normal aging on spatial learning. Young and aged Long-Evans rats were tested in a Morris water maze task that depends on the integrity of the hippocampus. ⋯ Parallel confocal microscopic analysis of the GluR2 subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptor failed to reveal reliable differences as a function of age or spatial learning ability. This analysis linking age, performance, and NR1 levels demonstrates that although dendritic NR1 is generally preserved in the aged rat hippocampus, levels of this receptor subunit in selective elements of hippocampal circuitry are linked to spatial learning. These findings suggest that NMDA receptor abundance in CA3 bears a critical relationship to learning mediated by the hippocampus throughout the life span.