• Neuroscience · Jun 2019

    Interleukin-18-deficient mice develop hippocampal abnormalities related to possible depressive-like behaviors.

    • Kyosuke Yamanishi, Nobutaka Doe, Keiichiro Mukai, Kaoru Ikubo, Takuya Hashimoto, Noriko Uwa, Miho Sumida, Yosif El-Darawish, Naomi Gamachi, Wen Li, Sachi Kuwahara-Otani, Seishi Maeda, Yuko Watanabe, Tetsu Hayakawa, Hiromichi Yamanishi, Tomohiro Matsuyama, Hideshi Yagi, Haruki Okamura, and Hisato Matsunaga.
    • Department of Neuropsychiatry, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya, Hyogo 6638501, Japan.
    • Neuroscience. 2019 Jun 1; 408: 147-160.

    AbstractInterleukin-18 (IL-18) is an inflammatory cytokine linked to major depressive disorder (MDD). MDD is closely related to metabolic disorders, such as diabetes mellitus (DM) and obesity. Moreover, DM is associated with cognitive impairment and promotes apoptosis of hippocampal cells by activating pro-apoptotic and inhibiting anti-apoptotic factors. IL-18-deficient (Il18-/-) mice are obese and have DM. Therefore, we hypothesized a close relationship between IL-18 and death of hippocampal cells, affecting neurogenesis related to behavioral changes such as MDD. Il18-/- male mice were generated on the C57Bl/6 background and Il18+/+ mice were used as controls. Behavioral, histopathological, and molecular responses, as well as responses to intracerebral recombinant IL-18 administration, were examined. Compared with Il18+/+ mice, Il18-/- mice had impaired learning and memory and exhibited lower motivation. In the Il18-/- mice, degenerated mitochondria were detected in synaptic terminals in the molecular layer, the polymorphic layer, and in mossy fibers in the dentate gyrus, suggesting mitochondrial abnormalities. Because of the degeneration of mitochondria in the dentate gyrus, in which pro-apoptotic molecules were upregulated and anti-apoptotic factors were decreased, apoptosis inducers were not cleaved, indicating inhibition of apoptosis. In addition, neurogenesis in the dentate gyrus and the maturity of neuronal cells were decreased in the Il18-/- mice, while intracerebral administration of recombinant IL-18 promoted significant recovery of neurogenesis. Our findings suggested that IL-18 was indispensable for mitochondrial homeostasis, sustaining clearance of degenerative neural cells, and supporting neurogenesis, normal neuronal maturation and hippocampal function.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.