• Neuroscience · Jun 2019

    Spatial representations in the superior colliculus are modulated by competition among targets.

    • Mario J Lintz, Jaclyn Essig, Joel Zylberberg, and Gidon Felsen.
    • Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, United States of America; Neuroscience Program, University of Colorado School of Medicine, Aurora, CO 80045, United States of America; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80045, United States of America.
    • Neuroscience. 2019 Jun 1; 408: 191203191-203.

    AbstractSelecting and moving to spatial targets are critical components of goal-directed behavior, yet their neural bases are not well understood. The superior colliculus (SC) is thought to contain a topographic map of contralateral space in which the activity of specific neuronal populations corresponds to particular spatial locations. However, these spatial representations are modulated by several decision-related variables, suggesting that they reflect information beyond simply the location of an upcoming movement. Here, we examine the extent to which these representations arise from competitive spatial choice. We recorded SC activity in male mice performing a behavioral task requiring orienting movements to targets for a water reward in two contexts. In "competitive" trials, either the left or right target could be rewarded, depending on which stimulus was presented at the central port. In "noncompetitive" trials, the same target (e.g., left) was rewarded throughout an entire block. While both trial types required orienting movements to the same spatial targets, only in competitive trials do targets compete for selection. We found that in competitive trials, pre-movement SC activity predicted movement to contralateral targets, as expected. However, in noncompetitive trials, some neurons lost their spatial selectivity and in others activity predicted movement to ipsilateral targets. Consistent with these findings, unilateral optogenetic inactivation of pre-movement SC activity ipsiversively biased competitive, but not noncompetitive, trials. Incorporating these results into an attractor model of SC activity points to distinct pathways for orienting movements under competitive and noncompetitive conditions, with the SC specifically required for selecting among multiple potential targets.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…