• Neuroscience · Jun 2019

    Action of Norepinephrine on Lamina X of the Spinal Cord.

    • Nobuko Ohashi, Masayuki Ohashi, and Hiroshi Baba.
    • Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City, Niigata 951-8510, Japan. Electronic address: ww81854@sa2.so-net.ne.jp.
    • Neuroscience. 2019 Jun 1; 408: 214-225.

    AbstractLamina X is localized in the spinal cord within the region surrounding the central canal and receives descending projections from the supraspinal nuclei. Norepinephrine (NE) is a neurotransmitter in descending pathways emanating from the brain stem; NE-containing fibers terminate in the spinal dorsal cord, particularly in the substantia gelatinosa (SG). NE enhances inhibitory synaptic transmission in SG neurons by activating presynaptic α1-receptors and hyperpolarizes the membranes of SG neurons by acting on α2-receptors; NE may thus act directly on SG neurons of the dorsal spinal cord and inhibit nociceptive transmission at the spinal level. NE-containing fibers also reportedly terminate in lamina X, suggesting that NE also modulates synaptic transmission in lamina X. However, the cellular mechanisms underlying such action have not been investigated. We hypothesized that NE might directly act on lamina X and enhance inhibitory synaptic transmission therein. Using rat spinal cord slices and in vitro whole-cell patch-clamps, we found that the bath-application of NE to lamina X does not affect the excitatory interneurons but enhances GABAergic and glycinergic miniature inhibitory postsynaptic currents (mIPSCs) and induces an outward current. NE-induced enhancement of mIPSCs was blocked by α1A-receptor antagonists, and NE-induced outward current was blocked by α2-receptor antagonists. NE did not affect GABA- or glycine- induced outward currents. These findings are similar to those obtained from SG neurons: NE may act at presynaptic terminals of GABAergic and glycinergic interneurons on lamina X to facilitate inhibitory-transmitter release through α1A-receptor activation and directly induce inhibitory interneuron membrane hyperpolarization through α2-receptors activation.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…