• Neuroscience · Jan 2014

    Glial cell line-derived neurotrophic factor (GDNF) expression and NMJ plasticity in skeletal muscle following endurance exercise.

    • A M Gyorkos, M J McCullough, and J M Spitsbergen.
    • Western Michigan University, Department of Biological Sciences, 1903 West Michigan Avenue, Kalamazoo, MI 49008-5410, USA. Electronic address: amy.gyorkos@wmich.edu.
    • Neuroscience. 2014 Jan 17;257:111-8.

    AbstractGlial cell line-derived neurotrophic factor (GDNF) supports and maintains the neuromuscular system during development and through adulthood by promoting neuroplasticity. The aim of this study was to determine if different modes of exercise can promote changes in GDNF expression and neuromuscular junction (NMJ) morphology in slow- and fast-twitch muscles. Rats were randomly assigned to a run training (run group), swim training (swim group), or sedentary control group. GDNF protein content was determined by enzyme-linked immunosorbant assay. GDNF protein content increased significantly in soleus (SOL) following both training protocols (P<0.05). Although not significant, an increase of 60% in the extensor digitorum longus (EDL) followed swim-training (NS; P<0.06). NMJ morphology was analyzed by measuring α-bungarotoxin labeled post-synaptic end plates. GDNF content and total end plate area were positively correlated. End plate area decreased in EDL of the run group and increased in SOL of the swim group. The results indicate that GDNF expression and NMJ morphological changes are activity dependent and that different changes may be observed by varying the exercise intensity in slow- and fast-twitch fibers. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…