• Neuroscience · Sep 2014

    White matter correlates of cognitive inhibition during development: a diffusion tensor imaging study.

    • S Treit, Z Chen, C Rasmussen, and C Beaulieu.
    • Centre for Neuroscience, University of Alberta, Edmonton, AB T6G-2V2, Canada.
    • Neuroscience. 2014 Sep 12;276:87-97.

    AbstractInhibitory control and cognitive flexibility are two key executive functions that develop in childhood and adolescence, increasing one's capacity to respond dynamically to changing external demands and refrain from impulsive behaviors. These gains evolve in concert with significant brain development. Magnetic resonance imaging studies have identified numerous frontal and cingulate cortical areas associated with performance on inhibition tasks, but less is known about the involvement of the underlying anatomical connectivity, namely white matter. Here we used diffusion tensor imaging (DTI) to examine correlations between a DTI-derived parameter, fractional anisotropy (FA) of white matter, and performance on the NEPSY-II Inhibition test (Naming, Inhibition and Switching conditions) in 49 healthy children aged 5-16years (20 females; 29 males). First, whole brain voxel-based analysis revealed several clusters in the frontal projections of the corpus callosum, where higher FA was associated with worse inhibitory performance, as well as several clusters in posterior brain regions and one in the brainstem where higher FA was associated with better cognitive flexibility (in the Switching task), suggesting a dichotomous relationship between FA and these two aspects of cognitive control. Tractography through these clusters identified several white matter tracts, which were then manual traced in native space. Pearson's correlations confirmed associations between higher FA of frontal projections of the corpus callosum with poorer inhibitory performance (independent of age), though associations with Switching were not significant. Post-hoc evaluation suggested that FA of orbital and anterior frontal projections of the corpus callosum also mediated performance differences across conditions, which may reflect differences in self-monitoring or strategy use. These findings suggest a link between the development of inhibition and cognitive control with that of the underlying white matter, and may help to identify deviations of neurobiology in adolescent psychopathology.Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.