• Neuroscience · Aug 2019

    Voxel-Based Morphometry: Improving the Diagnosis of Alzheimer's disease based on an Extreme Learning Machine method from the ADNI cohort.

    • Feng Zhang, Sijia Tian, Sipeng Chen, Yuan Ma, Xia Li, and Xiuhua Guo.
    • School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069. Electronic address: zhangfeng@ccmu.edu.cn.
    • Neuroscience. 2019 Aug 21; 414: 273-279.

    AbstractComputer-aided diagnosis has become a widely-used auxiliary tool for the diagnosis of Alzheimer's disease (AD). In this study, we developed an extreme learning machine (ELM) model to discriminate between patients with AD and normal controls (NCs) using voxel-based morphometry (VBM) obtained from magnetic resonance imaging. Support vector machine (SVM), Gaussian process regression (GPR), and partial least squares (PLS) regression were compared with the ELM model. The calculated characteristics, i.e., texture features, VBM parameters, and clinical information, were adopted as the classification features. A 10-fold cross validation was used to evaluate the performance of ELM, SVM, GPR, and PLS models. We applied the proposed methods to data from 58 patients with AD and 94 NCs, and achieved a classification accuracy of up to 0.96 with all classification features of the ELM model, while the results of the other three models were 0.82 (PLS), 0.79 (GPR), and 0.75 (SVM). Furthermore, the effect of VBM parameter modeling is better than texture parameter. Thus, our method was optimal in distinguishing patients with AD from NCs, and may therefore be useful for the diagnosis of AD.Copyright © 2019. Published by Elsevier Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…