• Neuroscience · Jul 2019

    Pharmacological identification of cholinergic receptor subtypes: modulation of locomotion and neural circuit excitability in Drosophila larvae.

    • Cole A Malloy, Eashwar Somasundaram, Aya Omar, Umair Bhutto, Meagan Medley, Nicole Dzubuk, and Robin L Cooper.
    • Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, KY 40506, USA; Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD 20892-3715, USA. Electronic address: cole.malloy@nih.gov.
    • Neuroscience. 2019 Jul 15; 411: 47-64.

    AbstractAcetylcholine (ACh) is an abundant neurotransmitter and neuromodulator in many species. In Drosophila melanogaster ACh is the neurotransmitter used in peripheral sensory neurons and is a primary excitatory neurotransmitter and neuromodulator within the central nervous system (CNS). The receptors that facilitate cholinergic transmission are divided into two broad subtypes: the ionotropic nicotinic acetylcholine receptors (nAChRs) and the metabotropic muscarinic acetylcholine receptors (mAChRs). This receptor classification is shared in both mammals and insects; however, both the pharmacological and functional characterization of these receptors within the Drosophila nervous system has lagged behind its mammalian model counterparts. In order to identify the impact of ACh receptor subtypes in regulating the performance of neural circuits within the larval CNS, we used a behavioral and electrophysiological approach to assess cholinergic modulation of locomotion and sensory-CNS-motor circuit excitability. We exposed intact and semi-intact 3rd instar larvae to ACh receptor agonists and antagonists to observe their roles in behavior and regulation of neural circuit excitability and to investigate AChR pharmacological properties in vivo. We combined this with targeted AChR RNAi-mediated knockdown to identify specific receptor subtypes facilitating ACh modulation of circuit efficacy. We identify a contribution by both mAChRs and nAChRs in regulation of locomotor behavior and reveal they play a role in modulation of the excitability of a sensory-CNS-motor circuit. We further reveal a conspicuous role for mAChR-A and mAChR-C in motor neurons in modulation of their input-output efficacy.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…