-
- S Ozaki, M Narita, M Iino, K Miyoshi, and T Suzuki.
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan.
- Neuroscience. 2003 Jan 1; 116 (1): 89-97.
AbstractThe present study was designed to investigate whether a state of neuropathic pain induced by sciatic nerve ligation could alter the rewarding effect, antinociception, and G-protein activation induced by a prototype of mu-opioid receptor agonist morphine in the mouse. The sciatic nerve ligation caused a long-lasting and profound thermal hyperalgesia. Under this neuropathic pain-like state, an i.c.v. morphine-induced place preference was observed in sham-operated mice but not in sciatic nerve-ligated mice. However, no differences in the antinociceptive effect of i.c.v.-administered morphine were noted between the groups. The increases in the binding of guanosine-5'-o-(3-[(35)S]thio)triphosphate induced by morphine in lower midbrain membranes including the ventral tegmental area, which contributes to the expression of the rewarding effect of opioid, were significantly attenuated in sciatic nerve-ligated mice. On the other hand, there were no differences in the stimulation of guanosine-5'-o-(3-[(35)S]thio)triphosphate binding to pons/medulla membranes, which plays an important role in the antinociception of mu-opioid receptor agonists, between the groups. In addition, no changes in levels of guanosine-5'-o-(3-[(35)S]thio)triphosphate binding by either the selective delta- or kappa-opioid receptor agonists were noted in membrane of the lower midbrain and limbic forebrain membranes obtained from sciatic nerve-ligated mice. Reverse transcription-polymerase chain reaction analysis showed that sciatic nerve ligation did not alter the mRNA product of mu-opioid receptors in the lower midbrain, indicating that a decrease in some mu-opioid receptor functions may result from the uncoupling of mu-opioid receptors from G-proteins. We found a significant increase in protein levels of G-protein-coupled receptor kinase 2, which causes receptor phosphorylation in membranes of the lower midbrain but not in the pons/medulla, obtained from mice with nerve injury, whereas there were no changes in the protein level of phosphorylated-protein kinase C in the lower midbrain. These results suggest that the uncoupling of mu-opioid receptors from G-proteins by G-protein-coupled receptor kinase 2 in the lower midbrain may, at least in part, contribute to the suppression of the rewarding effect of morphine under neuropathic pain.Copyright 2003 IBRO
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.