-
Critical care medicine · Oct 2019
Multicenter StudyOutcome Prediction in Postanoxic Coma With Deep Learning.
- Marleen C Tjepkema-Cloostermans, Catarina da Silva Lourenço, Barry J Ruijter, Selma C Tromp, Gea Drost, Francois H M Kornips, Albertus Beishuizen, Frank H Bosch, Jeannette Hofmeijer, and van Putten Michel J A M MJAM Department of Clinical Neurophysiology and Neurology, Medisch Spectrum Twente, Enschede, The Netherlands. .
- 1Department of Clinical Neurophysiology and Neurology, Medisch Spectrum Twente, Enschede, The Netherlands. 2Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, Enschede, The Netherlands. 3Biomedical Engineering, Universidade do Porto, Porto, Portugal. 4Department of Clinical Neurophysiology, St. Antonius Hospital, Nieuwegein, The Netherlands. 5Department of Neurology and Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. 6Department of Neurology, VieCuri Medical Center, Venlo, The Netherlands. 7Intensive Care Center, Medisch Spectrum Twente, Enschede, The Netherlands. 8Department of Intensive Care, Rijnstate hospital, Arnhem, The Netherlands. 9Department of Neurology, Rijnstate hospital, Arnhem, The Netherlands.
- Crit. Care Med. 2019 Oct 1; 47 (10): 1424-1432.
ObjectivesVisual assessment of the electroencephalogram by experienced clinical neurophysiologists allows reliable outcome prediction of approximately half of all comatose patients after cardiac arrest. Deep neural networks hold promise to achieve similar or even better performance, being more objective and consistent.DesignProspective cohort study.SettingMedical ICU of five teaching hospitals in the Netherlands.PatientsEight-hundred ninety-five consecutive comatose patients after cardiac arrest.InterventionsNone.Measurements And Main ResultsContinuous electroencephalogram was recorded during the first 3 days after cardiac arrest. Functional outcome at 6 months was classified as good (Cerebral Performance Category 1-2) or poor (Cerebral Performance Category 3-5). We trained a convolutional neural network, with a VGG architecture (introduced by the Oxford Visual Geometry Group), to predict neurologic outcome at 12 and 24 hours after cardiac arrest using electroencephalogram epochs and outcome labels as inputs. Output of the network was the probability of good outcome. Data from two hospitals were used for training and internal validation (n = 661). Eighty percent of these data was used for training and cross-validation, the remaining 20% for independent internal validation. Data from the other three hospitals were used for external validation (n = 234). Prediction of poor outcome was most accurate at 12 hours, with a sensitivity in the external validation set of 58% (95% CI, 51-65%) at false positive rate of 0% (CI, 0-7%). Good outcome could be predicted at 12 hours with a sensitivity of 48% (CI, 45-51%) at a false positive rate of 5% (CI, 0-15%) in the external validation set.ConclusionsDeep learning of electroencephalogram signals outperforms any previously reported outcome predictor of coma after cardiac arrest, including visual electroencephalogram assessment by trained electroencephalogram experts. Our approach offers the potential for objective and real time, bedside insight in the neurologic prognosis of comatose patients after cardiac arrest.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.