-
- Matteo Bologna, Andrea Guerra, Giulia Paparella, Donato Colella, Alessandro Borrelli, Antonio Suppa, Vincenzo Di Lazzaro, Peter Brown, and Alfredo Berardelli.
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy; IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, (IS), Italy.
- Neuroscience. 2019 Jul 15; 411: 130-139.
AbstractIt is well established that the primary motor cortex (M1) plays a significant role in motor learning in healthy humans. It is unclear, however, whether mechanisms of motor learning include M1 oscillatory activity. In this study, we aimed to test whether M1 oscillations, entrained by transcranial Alternating Current Stimulation (tACS) at motor resonant frequencies, have any effect on motor acquisition and retention during a rapid learning task, as assessed by kinematic analysis. We also tested whether the stimulation influenced the corticospinal excitability changes after motor learning. Sixteen healthy subjects were enrolled in the study. Participants performed the motor learning task in three experimental conditions: sham-tACS (baseline), β-tACS and γ-tACS. Corticospinal excitability was assessed with single-pulse TMS before the motor learning task and 5, 15, and 30 min thereafter. Motor retention was tested 30 min after the motor learning task. During training, acceleration of the practiced movement improved in the baseline condition and the enhanced performance was retained when tested 30 min later. The β-tACS delivered during training inhibited the acquisition of the motor learning task. Conversely, the γ-tACS slightly improved the acceleration of the practiced movement during training but it reduced motor retention. At the end of training, corticospinal excitability had similarly increased in the three sessions. The results are compatible with the hypothesis that entrainment of the two major motor resonant rhythms through tACS over M1 has different effects on motor learning in healthy humans. The effects, however, were unrelated to corticospinal excitability changes.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.