• Neuroscience · Mar 2014

    Modulation of spinal excitability by a sub-threshold stimulation of M1 area during muscle lengthening.

    • S Grosprêtre, C Papaxanthis, and A Martin.
    • INSERM U1093, Faculté des sciences du sport, BP 27 877, Dijon F-21078, France; Université de Bourgogne, Faculté des sciences du sport, BP 27 877, Dijon F-21078, France. Electronic address: sidney.grospretre-gauvin@u-bourgogne.fr.
    • Neuroscience. 2014 Mar 28;263:60-71.

    AbstractIt is well known that the H-reflex amplitude decreases during passive muscle lengthening in comparison with passive shortening. However, this decrease in spinal synaptic efficacy observed during passive lengthening seems to be lesser during eccentric voluntary contraction. The aim of the present study was to examine whether spinal excitability during lengthening condition could be modulated by magnetic brain stimulation. H reflexes of the triceps surae muscles were elicited on 10 young healthy subjects, and conditioned by a sub-threshold transcranial magnetic stimulation (TMS). The conditioning stimulation was applied over the M1 area of triceps surae muscles at an intensity below motor threshold with a conditioning-test interval of 5ms. Conditioned and non-conditioned H-reflexes were elicited at rest, during passive lengthening and shortening, and during submaximal contractions (concentric, eccentric and isometric). During passive and active lengthening, H reflexes conditioned by a sub-threshold TMS pulse increased on average by 50% compared with non-conditioned responses. No significant effect was found during isometric and concentric conditions. Activation of the corticospinal pathway would partially cancel inhibitions caused by muscle stretch, and according to the time-delayed effect, this result suggested the existence of a specific polysynaptic pathway. In additional experiments, H responses were conditioned by cervico-medullary stimulations, showing that the modulation described by the previous results involves subcortical mechanisms. This study provides further evidences that the modulation of the final cortico-spinal command reaching the muscle depends on a central mechanism that controls peripheral input, such as Ia afference discharge during lengthening.Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.