• NeuroImage · May 2015

    Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality.

    • Mathias Vukelić and Alireza Gharabaghi.
    • Division of Functional and Restorative Neurosurgery & Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen, Germany; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen, Germany. Electronic address: mathias.vukelic@cin.uni-tuebingen.de.
    • Neuroimage. 2015 May 1; 111: 1-11.

    AbstractNeurofeedback of self-regulated brain activity in circumscribed cortical regions is used as a novel strategy to facilitate functional restoration following stroke. Basic knowledge about its impact on motor system oscillations and functional connectivity is however scarce. Specifically, a direct comparison between different feedback modalities and their neural signatures is missing. We assessed a neurofeedback training intervention of modulating β-activity in circumscribed sensorimotor regions by kinesthetic motor imagery (MI). Right-handed healthy participants received two different feedback modalities contingent to their MI-associated brain activity in a cross-over design: (I) visual feedback with a brain-computer interface (BCI) and (II) proprioceptive feedback with a brain-robot interface (BRI) orthosis attached to the right hand. High-density electroencephalography was used to examine the reactivity of the cortical motor system during the training session of each task by studying both local oscillatory power entrainment and distributed functional connectivity. Both feedback modalities activated a distributed functional connectivity network of coherent oscillations. A significantly higher skill and lower variability of self-controlled sensorimotor β-band modulation could, however, be achieved in the BRI condition. This gain in controlling regional motor oscillations was accompanied by functional coupling of remote β-band and θ-band activity in bilateral fronto-central regions and left parieto-occipital regions, respectively. The functional coupling of coherent θ-band oscillations correlated moreover with the skill of regional β-modulation thus revealing a motor learning related network. Our findings indicate that proprioceptive feedback is more suitable than visual feedback to entrain the motor network architecture during the interplay between motor imagery and feedback processing thus resulting in better volitional control of regional brain activity. Published by Elsevier Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…