-
- Wesley A Bowman, James L Robar, and Mike Sattarivand.
- Department of Medical Physics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
- Med Phys. 2017 Mar 1; 44 (3): 823-831.
PurposeStereoscopic x-ray image guided radiotherapy for lung tumors is often hindered by bone overlap and limited soft-tissue contrast. This study aims to evaluate the feasibility of dual-energy imaging techniques and to optimize parameters of the ExacTrac stereoscopic imaging system to enhance soft-tissue imaging for application to lung stereotactic body radiation therapy.MethodsSimulated spectra and a physical lung phantom were used to optimize filter material, thickness, tube potentials, and weighting factors to obtain bone subtracted dual-energy images. Spektr simulations were used to identify material in the atomic number range (3-83) based on a metric defined to separate spectra of high and low-energies. Both energies used the same filter due to time constraints of imaging in the presence of respiratory motion. The lung phantom contained bone, soft tissue, and tumor mimicking materials, and it was imaged with a filter thickness in the range of (0-0.7) mm and a kVp range of (60-80) for low energy and (120,140) for high energy. Optimal dual-energy weighting factors were obtained when the bone to soft-tissue contrast-to-noise ratio (CNR) was minimized. Optimal filter thickness and tube potential were achieved by maximizing tumor-to-background CNR. Using the optimized parameters, dual-energy images of an anthropomorphic Rando phantom with a spherical tumor mimicking material inserted in his lung were acquired and evaluated for bone subtraction and tumor contrast. Imaging dose was measured using the dual-energy technique with and without beam filtration and matched to that of a clinical conventional single energy technique.ResultsTin was the material of choice for beam filtering providing the best energy separation, non-toxicity, and non-reactiveness. The best soft-tissue-weighted image in the lung phantom was obtained using 0.2 mm tin and (140, 60) kVp pair. Dual-energy images of the Rando phantom with the tin filter had noticeable improvement in bone elimination, tumor contrast, and noise content when compared to dual-energy imaging with no filtration. The surface dose was 0.52 mGy per each stereoscopic view for both clinical single energy technique and the dual-energy technique in both cases of with and without the tin filter.ConclusionsDual-energy soft-tissue imaging is feasible without additional imaging dose using the ExacTrac stereoscopic imaging system with optimized acquisition parameters and no beam filtration. Addition of a single tin filter for both the high and low energies has noticeable improvements on dual-energy imaging with optimized parameters. Clinical implementation of a dual-energy technique on ExacTrac stereoscopic imaging could improve lung tumor visibility.© 2017 American Association of Physicists in Medicine.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.