-
- A N Pierce, J M Ryals, R Wang, and J A Christianson.
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States.
- Neuroscience. 2014 Mar 28;263:216-30.
AbstractEarly life stress can permanently alter functioning of the hypothalamic-pituitary-adrenal (HPA) axis, which regulates the stress response and influences the perception of pain. Chronic pelvic pain patients commonly report having experienced childhood neglect or abuse, which increases the likelihood of presenting with comorbid chronic pain and/or mood disorders. Animal models of neonatal stress commonly display enhanced anxiety-like behaviors, colorectal hypersensitivity, and disruption of proper neuro-immune interactions in adulthood. Here, we tested the hypothesis that early life stress impacts vaginal sensitivity by exposing mice to neonatal maternal separation (NMS) for 3h/day during the first two (NMS14) or three (NMS21) postnatal weeks. As adults, female mice underwent vaginal balloon distension (VBD), which was also considered an acute stress. Before or after VBD, mice were assessed for anxiety-like behavior, hindpaw sensitivity, and changes in gene and protein expression related to HPA axis function and regulation. NMS21 mice displayed significantly increased vaginal sensitivity compared to naïve mice, as well as significantly reduced anxiety-like behavior at baseline, which was heightened following VBD. NMS21 mice exhibited significant thermal and mechanical hindpaw hypersensitivity at baseline and following VBD. NMS14 mice displayed no change in anxiety-like behavior and only exhibited significantly increased hindpaw mechanical and thermal sensitivity following VBD. Centrally, a significant decrease in negative regulation of the HPA axis was observed in the hypothalamus and hippocampus of NMS21 mice. Peripherally, NMS and VBD affected the expression of inflammatory mediators in the vagina and bladder. Corticotropin-releasing factor (CRF) receptor and transient receptor potential (TRP) channel protein expression was also significantly, and differentially, affected in vagina, bladder, and colon by both NMS and VBD. Together these data indicate that NMS affects both central and peripheral aspects of the HPA axis, which may drive changes in vaginal sensitivity and the development of comorbid chronic pain and mood disorders.Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.