• J. Neurosci. · Jul 2014

    Chronic deep cerebellar stimulation promotes long-term potentiation, microstructural plasticity, and reorganization of perilesional cortical representation in a rodent model.

    • Jessica Cooperrider, Havan Furmaga, Ela Plow, Hyun-Joo Park, Zhihong Chen, Grahame Kidd, Kenneth B Baker, John T Gale, and Andre G Machado.
    • Center for Neurological Restoration, Neurological Institute and Departments of Neuroscience and.
    • J. Neurosci. 2014 Jul 2; 34 (27): 9040-50.

    AbstractControl over postinjury CNS plasticity is a major frontier of science that, if conquered, would open new avenues for treatment of neurological disorders. Here we investigate the functional, physiological, and structural changes in the cerebral cortex associated with chronic deep brain stimulation of the cerebellar output, a treatment approach that has been shown to improve postischemia motor recovery in a rodent model of cortical infarcts. Long-Evans rats were pretrained on the pasta-matrix retrieval task, followed by induction of focal cortical ischemia and implantation of a macroelectrode in the contralesional lateral cerebellar nucleus. Animals were assigned to one of three treatment groups pseudorandomly to balance severity of poststroke motor deficits: REGULAR stimulation, BURST stimulation, or SHAM. Treatment initiated 2 weeks post surgery and continued for 5 weeks. At the end, animals were randomly selected for perilesional intracortical microstimulation mapping and tissue sampling for Western blot analysis or contributed tissue for 3D electron microscopy. Evidence of enhanced cortical plasticity with therapeutically effective stimulation is shown, marked by greater perilesional reorganization in stimulation- treated animals versus SHAM. BURST stimulation was significantly effective for promoting distal forepaw cortical representation. Stimulation-treated animals showed a twofold increase in synaptic density compared with SHAM. In addition, treated animals demonstrated increased expression of synaptic markers of long-term potentiation and plasticity, including synaptophysin, NMDAR1, CaMKII, and PSD95. These findings provide a critical foundation of how deep cerebellar stimulation may guide plastic reparative reorganization after nonprogressive brain injury and indicate strong translational potential.Copyright © 2014 the authors 0270-6474/14/349040-11$15.00/0.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.