• J Biomech Eng · Jun 2006

    A 3D computational simulation of fracture callus formation: influence of the stiffness of the external fixator.

    • M J Gómez-Benito, J M García-Aznar, J H Kuiper, and M Doblaré.
    • Group of Structural Mechanics and Materials Modelling, Aragón Institute of Engineering Research (I3A), University of Zaragoza, María de Luna 3, 50008, Zaragoza, Spain.
    • J Biomech Eng. 2006 Jun 1; 128 (3): 290-9.

    AbstractThe stiffness of the external fixation highly influences the fracture healing pattern. In this work we study this aspect by means of a finite element model of a simple transverse mid-diaphyseal fracture of an ovine metatarsus fixed with a bilateral external fixator. In order to simulate the regenerative process, a previously developed mechanobiological model of bone fracture healing was implemented in three dimensions. This model is able to simulate tissue differentiation, bone regeneration, and callus growth. A physiological load of 500 N was applied and three different stiffnesses of the external fixator were simulated (2300, 1725, and 1150 N/mm). The interfragmentary strain and load sharing mechanism between bone and the external fixator were compared to those recorded in previous experimental works. The effects of the stiffness on the callus shape and tissue distributions in the fracture site were also analyzed. We predicted that a lower stiffness of the fixator delays fracture healing and causes a larger callus, in correspondence to well-documented clinical observations.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…