-
Randomized Controlled Trial
Fronto-Parietal Brain Areas Contribute to the Online Control of Posture during a Continuous Balance Task.
- Rahul Goel, Sho Nakagome, Nishant Rao, William H Paloski, Jose L Contreras-Vidal, and Pranav J Parikh.
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, Texas.
- Neuroscience. 2019 Aug 10; 413: 135-153.
AbstractNeuroimaging studies have provided evidence for the involvement of frontal and parietal cortices in postural control. However, the specific role of these brain areas for postural control remains to be known. Here, we investigated the effects of disruptive transcranial magnetic stimulation (TMS) over supplementary motor areas (SMA) during challenging continuous balance task in healthy young adults. We hypothesized that a virtual lesion of SMA will alter activation within the brain network identified using electroencephalography (EEG) and impair performance of the postural task. Twenty healthy young adults received either continuous theta burst stimulation (cTBS) or sham stimulation over SMA followed by the performance of a continuous balance task with or without somatosensory input distortion created by sway-referencing the support surface. cTBS over SMA compared to sham stimulation showed a smaller increase in root mean square of center of pressure as the difficulty of continuous balance task increased suggestive of altered postural control mechanisms to find a stable solution under challenging sensory conditions. Consistent with earlier studies, we found sources of EEG activation within anterior cingulate (AC), cingulate gyrus (CG), bilateral posterior parietal regions (PPC) during the balance task. Importantly, cTBS over SMA compared to sham stimulation altered EEG power within the identified fronto-parietal regions. These findings suggest that the changes in activation within distant fronto-parietal brain areas following cTBS over SMA contributed to the altered postural behavior. Our study confirms a critical role of AC, CG, and both PPC regions in calibrating online postural responses during a challenging continuous balance task.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.