• Neuroscience · May 2014

    Activation of a Gq-coupled membrane estrogen receptor rapidly attenuates α2-adrenoceptor-induced antinociception via an ERK I/II-dependent, non-genomic mechanism in the female rat.

    • S Nag and S S Mokha.
    • Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, United States. Electronic address: snag@mmc.edu.
    • Neuroscience. 2014 May 16;267:122-34.

    AbstractThough sex differences in pain and analgesia are known, underlying mechanisms remain elusive. This study addresses the selective contribution of membrane estrogen receptors (mERs) and mER-initiated non-genomic signaling mechanisms in our previously reported estrogen-induced attenuation of α2-adrenoceptor-mediated antinociception. By selectively targeting spinal mERs in ovariectomized female rats using β-estradiol 6-(O-carboxy-methyl)oxime bovine serum albumin (E2BSA) (membrane impermeant estradiol analog), and ERα selective agonist 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT), ERβ selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), G-protein-coupled estrogen receptor 30 (GPR30) agonist G1 and Gq-coupled mER (Gq-mER) agonist STX, we provide strong evidence that Gq-mER activation may solely contribute to suppressing clonidine (an α2-adrenoceptor agonist)-induced antinociception, using the nociceptive tail-flick test. Increased tail-flick latencies (TFLs) by intrathecal (i.t.) clonidine were not significantly altered by i.t. PPT, DPN, or G1. In contrast, E2BSA or STX rapidly and dose-dependently attenuated clonidine-induced increase in TFL. ICI 182,780, the ER antagonist, blocked this effect. Consistent with findings with the lack of effect of ERα and ERβ agonists that modulate receptor-regulated transcription, inhibition of de novo protein synthesis using anisomycin also failed to alter the effect of E2BSA or STX, arguing against a contribution of genomic mechanisms. Immunoblotting of spinal tissue revealed that mER activation increased levels of phosphorylated extracellular signal-regulated kinase (ERK) but not of protein kinase A (PKA) or C (PKC). In vivo inhibition of ERK with U0126 blocked the effect of STX and restored clonidine antinociception. Although estrogen-induced delayed genomic mechanisms may still exist, data presented here indicate that Gq-mER may solely mediate estradiol-induced attenuation of clonidine antinociception via a rapid, reversible, and ERK-dependent, non-genomic mechanism, suggesting that Gq-mER blockade might provide improved analgesia in females.Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.