• Neuroscience · May 2014

    Modulation of glycinergic synaptic transmission in the trigeminal and hypoglossal motor nuclei by the nitric oxide-cyclicGMP signaling pathway.

    • I Pose, V Silveira, A Damián, R Higgie, and F R Morales.
    • Departamento de Fisiología, Facultad de Medicina, UDELAR, Montevideo, Uruguay. Electronic address: ipose@fmed.edu.uy.
    • Neuroscience. 2014 May 16;267:177-86.

    AbstractIn a previous work we found that nitric oxide (NO) and cyclicGMP (cGMP) inhibit glutamatergic synaptic transmission in trigeminal motoneurons (MnV). Here we study the actions of the NO/cGMP signaling pathway on glycinergic synaptic transmission in trigeminal and hypoglossal motoneurons (MnXII) in brain stem slices of neonatal rats. Glycinergic inhibitory postsynaptic currents (IPSCs) were recorded in MnV by stimulation of the supratrigeminal nucleus (SuV) and in MnXII by stimulation of the nucleus of Roller. The NO donor DETA/NONOate (DETA/NO) reduced the amplitude of the IPSC to 58.1±4.2% of control values in MnV. In the presence of YC-1, a modulator of guanylate cyclase that acts as a NO sensitizer, lower and otherwise ineffective concentrations of DETA/NO induced a reduction of the IPSC to 47.2±15.6%. NO effects were mimicked by 8 bromo cyclicGMP (8BrcGMP). They were accompanied by an increase in the paired pulse facilitation (PPF) and in the failure rate of evoked IPSCs. 8BrcGMP did not modify the glycinergic currents elicited by exogenous glycine. In MnXII the IPSCs were also reduced by NO donors and 8BrcGMP to 52.9±6.3% and 45.9±4% of control values, respectively. In these neurons, but not in MnV, we also observed excitatory postsynaptic actions of NO donors. We propose that the differences between the two motor pools may be due to a differential development of the nitrergic system in the two nuclei. Our data show that NO, through its second messenger cGMP, reduces inhibitory glycinergic synaptic transmission in both MnV and MnXII. For MnV, evidence in favor of presynaptic inhibition of glycine release is presented. Given our previous data together with the current results, we propose that the NO/cGMP signaling pathway participates pre- and postsynaptically in the combined regulation of MnV and MnXII activities in motor acts in which they participate.Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…