• Neuroscience · May 2014

    Neonatal ketamine exposure causes impairment of long-term synaptic plasticity in the anterior cingulate cortex of rats.

    • R-R Wang, J-H Jin, A W Womack, D Lyu, S S Kokane, N Tang, X Zou, Q Lin, and J Chen.
    • Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing, China; Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX, USA; Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.
    • Neuroscience. 2014 May 30;268:309-17.

    AbstractKetamine, a dissociative anesthetic most commonly used in many pediatric procedures, has been reported in many animal studies to cause widespread neuroapoptosis in the neonatal brain after exposure in high doses and/or for a prolonged period. This neurodegenerative change occurs most severely in the forebrain including the anterior cingulate cortex (ACC) that is an important brain structure for mediating a variety of cognitive functions. However, it is still unknown whether such apoptotic neurodegeneration early in life would subsequently impair the synaptic plasticity of the ACC later in life. In this study, we performed whole-cell patch-clamp recordings from the ACC brain slices of young adult rats to examine any alterations in long-term synaptic plasticity caused by neonatal ketamine exposure. Ketamine was administered at postnatal day 4-7 (subcutaneous injections, 20mg/kg given six times, once every 2h). At 3-4weeks of age, long-term potentiation (LTP) was induced and recorded by monitoring excitatory postsynaptic currents from ACC slices. We found that the induction of LTP in the ACC was significantly reduced when compared to the control group. The LTP impairment was accompanied by an increase in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated excitatory synaptic transmission and a decrease in GABA inhibitory synaptic transmission in neurons of the ACC. Thus, our present findings show that neonatal ketamine exposure causes a significant LTP impairment in the ACC. We suggest that the imbalanced synaptic transmission is likely to contribute to ketamine-induced LTP impairment in the ACC.Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.