-
- C-L Lin, P Heron, S R Hamann, and G M Smith.
- Department of Neurosurgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States.
- Neuroscience. 2014 Jul 11; 272: 768776-87.
AbstractSuccessful regeneration after injury requires either the direct reformation of the circuit or the formation of a bridge circuit to provide partial functional return through a more indirect route. Presently, little is known about the specificity of how regenerating axons reconnect or reconstruct functional circuits. We have established an in vivo Dorsal root entry zone (DREZ) model, which in the presence of Nerve Growth Factor (NGF), shows very robust regeneration of peptidergic nociceptive axons, but not other sensory axons. Expression of NGF in normal, non-injured animals leads to robust sprouting of only the peptidergic nociceptive axons. Interestingly, NGF-induced sprouting of these axons leads to severe chronic pain, whereas, regeneration leads to protective-like pain without chronic pain. Using this model we set out to compare differences in behavioral outcomes and circuit features between these two groups. In this study, we examined pre-synaptic and post-synaptic markers to evaluate the relationship between synaptic connections and behavioral responses. NGF-induced sprouting of calcitonin gene-related peptide (CGRP) axons resulted in a significant redistribution of synapses and cFos expression into the deeper dorsal horn. Regeneration of only the CGRP axons showed a general reduction in synapses and cFos expression within laminae I and II; however, inflammation of the hindpaw induced peripheral sensitization. These data show that although NGF-induced sprouting of peptidergic axons induces robust chronic pain and cFos expression throughout the entire dorsal horn, regeneration of the same axons resulted in normal protective pain with a synaptic and cFos distribution similar, albeit significantly less than that shown by the sprouting of CGRP axons.Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.