• Neuroscience · Jul 2014

    Vector-induced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury.

    • N Weishaupt, A L O Mason, C Hurd, Z May, D C Zmyslowski, D Galleguillos, S Sipione, and K Fouad.
    • Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, MSB 453, Canada. Electronic address: nweishau@uwo.ca.
    • Neuroscience. 2014 Jul 11;272:65-75.

    AbstractRewiring the injured corticospinal tract (CST) by promoting connections between CST axons and spared neurons is a strategy being explored experimentally to achieve improved recovery of motor function after spinal cord injury (SCI). Reliable interventions to promote and direct growth of collaterals from injured CST axons are in high demand to promote functionally relevant detour pathways. A promising tool is neurotrophin-3 (NT-3), which has shown growth-stimulating and chemo-attractive effects for spared CST axons caudal to a CST lesion. Yet, efforts to promote growth of injured CST axons rostral to a SCI with NT-3 have been less successful to date. Evidence indicates that immune activation in the local growth environment, either intrinsic or induced by the endotoxin lipopolysaccharide (LPS), can play a decisive role in the CST's responsiveness to NT-3. Here, we test the potential of NT-3 as a tool to enhance and direct collateral growth from the injured CST rostral to a SCI (1) using long-term expression of NT-3 by adeno-associated viral vectors, (2) with and without stimulating the immune system with LPS. Our results indicate that inducing a growth response from injured CST axons into a region of vector-mediated NT-3 expression is possible in the environment of the spinal cord rostral to a SCI, but seems dependent on the distance between the responding axon and the source of NT-3. Our findings also suggest that injured CST axons do not increase their growth response to NT-3 after immune activation with LPS in this environment. In conclusion, this is to our knowledge the first demonstration that NT-3 can be effective at promoting growth of injured CST collaterals far rostral to a SCI. Making NT-3 available in close proximity to CST target axons may be the key to success when using NT-3 to rewire the injured CST in future investigations.Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.