• Neuroscience · Jan 2003

    Comparative Study

    Cholecystokinin expression after hippocampal deafferentiation: molecular evidence revealed by differential display-reverse transcription-polymerase chain reaction.

    • A U Bräuer, N E Savaskan, M Plaschke, O Ninnemann, and R Nitsch.
    • Department of Cell and Neurobiology, Oskar-Hertwig House, Humboldt University Medical School Charité, Philippstrasse 12, Philippstrasse 12, D-10115 Berlin, Germany. anja.braeuer@charite.de
    • Neuroscience. 2003 Jan 1; 121 (1): 111-21.

    AbstractThe cortical information flow via the perforant path represents a major excitatory projection to the hippocampus. Lesioning this projection leads to massive degeneration and subsequently to reorganization in its termination zones as well as in primary non-affected subfields of the hippocampus. The molecular mechanisms and factors which are involved in the postlesional events are poorly defined. Using a differential display reverse transcription-polymerase chain reaction (DDRT-PCR) strategy, we located one band which occurred only in control hippocampus lanes and almost disappeared in the lanes of lesioned hippocampi. By sequencing, we identified the corresponding gene as cholecystokinin (CCK). Northern blot analysis confirmed a decreased transcription of CCK after lesion. In situ hybridization analysis was performed for localization and quantification of altered CCK transcription. We noted a significant downregulation of CCK transcription in the hippocampus (20%) and in the contralateral cortex (12%) 1-day after lesion (dal) and an increased signal in the ipsilateral cortex (10.5%). This pattern was altered, showing upregulation of CCK mRNA expression, reaching its highest level of 70% above control levels at 5 dal. In the hippocampus, the control level was reached again at 21 dal, whereas the cortex reached the control level at 10 dal. In comparison, the mRNA transcripts of the receptors CCK(A) and CCK(B) remained unchanged. Since CCK-containing neurons are involved in the modulation of pyramidal and granule cell excitability, our data indicate a time course correlation between CCK mRNA expression and postlesional axonal sprouting response in the hippocampus.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…