• Neuroscience · Jan 2003

    Comparative Study

    Methamphetamine-induced deficits of brain monoaminergic neuronal markers: distal axotomy or neuronal plasticity.

    • T R Guilarte, M K Nihei, J L McGlothan, and A S Howard.
    • Molecular Neurotoxicology Laboratory, Department of Environmental Health Sciences, 615 North Wolfe Street, Room W2001, The Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA. tguilart@jhsph.edu
    • Neuroscience. 2003 Jan 1; 122 (2): 499-513.

    AbstractWe examined the effects of methamphetamine (METH) on monoaminergic (i.e. dopamine and serotonin) axonal markers and glial cell activation in the rat brain. Our findings indicate that the loss of dopamine transporters (DAT), serotonin transporters (5-HTT), vesicular monoamine transporter type-2 (VMAT-2) and glial cell activation induced by METH in the striatum and in the central gray are consistent with a degenerative process. Our novel finding of METH effects on monoaminergic neurons in the central gray may have important implications on METH-induced hyperthermia. In other brain regions examined, DAT and 5-HTT deficits after METH administration were present in the absence of lasting changes in VMAT-2 levels or glial cell activation. Brain regions exhibiting protracted deficits in DAT and/or 5-HTT and VMAT-2 levels also expressed increased levels of [(3)H]-R-PK11195 binding to peripheral benzodiazepine receptors, a quantitative marker of glial cell activation. Immunohistochemical assessment of microglia and astrocytes confirmed the PBR results. Microglia activation was more pronounced than astrocytosis in affected regions in most METH-exposed brains with the exception of a small number of rats that were most severely affected by METH based on loss of body weight. In these rats, both microglia and astrocytes were highly activated and expressed a distinct regional pattern suggestive of widespread brain injury. The reason for the pattern of glial cell activation in this group of rats is not currently known but it may be associated with METH-induced hyperthermia. In summary, our findings suggest two neurotoxic endpoints in the brain of METH-exposed animals. Brain regions exhibiting DAT and 5-HTT deficits that co-localize with decreased VMAT-2 levels and glial cell activation may represent monoaminergic terminal degeneration. However, the DAT and 5-HTT deficits in brain regions lacking a deficit in VMAT-2 and glial cell activation may reflect drug-induced modulation of these plasma membrane proteins.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.