• Neuroscience · Jan 2003

    Comparative Study

    Kinetics of synaptic transfer from rods and cones to horizontal cells in the salamander retina.

    • W B Thoreson, D Tranchina, and P Witkovsky.
    • Department of Ophthalmology, 985540 University of Nebraska Medical Center, Omaha, NE 68198-5540, USA. wbthores@unmc.edu
    • Neuroscience. 2003 Jan 1; 122 (3): 785-98.

    AbstractWe examined synaptic transmission between rods or cones and horizontal cells, using perforated patch recording techniques in salamander retinal slices. Experimental conditions were established under which horizontal cells received nearly pure rod or pure cone input. The response-intensity relation for both photoreceptors and horizontal cells was described by a Michaelis-Menten function with an exponent close to 1. A dynamic model was developed for the transduction from photoreceptor voltage to postsynaptic current. The basic model assumes that: (i) photoreceptor light-evoked voltage controls Ca2+ entry according to a Boltzmann relation; (ii) the rate of glutamate release depends linearly on the voltage-gated Ca2+ current (ICa) in the synaptic terminal; (iii) glutamate concentration in the synaptic cleft reflects the balance of release and reuptake in which reuptake obeys first order kinetics; (iv) the binding of glutamate to its receptor and channel gating are fast compared with glutamate kinetics in the synaptic cleft. The good fit to the model confirms that these are the key features of synaptic transmission from rods and cones. The model accommodated changes in kinetics induced by the glutamate uptake blocker, dihydrokainate. The match between model and response was not improved by including an estimate of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor desensitization or by making glutamate uptake voltage dependent.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…