• Neuroscience · Jan 2003

    Cerebellar learning of bio-mechanical functions of extra-ocular muscles: modeling by artificial neural networks.

    • M Ebadzadeh and C Darlot.
    • Département de Traitement des Signaux et des Images, 46 rue Barrault, 75634 Paris 13, France.
    • Neuroscience. 2003 Jan 1; 122 (4): 941-66.

    AbstractA control circuit is proposed to model the command of saccadic eye movements. Its wiring is deduced from a mathematical constraint, i.e. the necessity, for motor orders processing, to compute an approximate inverse function of the bio-mechanical function of the moving plant, here the bio-mechanics of the eye. This wiring is comparable to the anatomy of the cerebellar pathways. A predicting element, necessary for inversion and thus for movement accuracy, is modeled by an artificial neural network whose structure, deduced from physical constraints expressing the mechanics of the eye, is similar to the cell connectivity of the cerebellar cortex. Its functioning is set by supervised reinforcement learning, according to learning rules aimed at reducing the errors of pointing, and deduced from a differential calculation. After each movement, a teaching signal encoding the pointing error is distributed to various learning sites, as is, in the cerebellum, the signal issued from the inferior olive and conveyed to various cell types by the climbing fibers. Results of simulations lead to predict the existence of a learning site in the glomeruli. After learning, the model is able to accurately simulate saccadic eye movements. It accounts for the function of the cerebellar pathways and for the final integrator of the oculomotor system. The novelty of this model of movement control is that its structure is entirely deduced from mathematical and physical constraints, and is consistent with general anatomy, cell connectivity and functioning of the cerebellar pathways. Even the learning rules can be deduced from calculation, and they reproduce long term depression, the learning process which takes place in the dendritic arborization of the Purkinje cells. This approach, based on the laws of mathematics and physics, appears thus as an efficient way of understanding signal processing in the motor system.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.