-
- I N Singh, R J Goody, S M Goebel, K M Martin, P E Knapp, Z Marinova, D Hirschberg, T Yakovleva, T Bergman, G Bakalkin, and K F Hauser.
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, USA.
- Neuroscience. 2003 Jan 1; 122 (4): 1013-23.
AbstractDynorphin A (1-17), an endogenous opioid neuropeptide, can have pathophysiological consequences at high concentrations through actions involving glutamate receptors. Despite evidence of excitotoxicity, the basic mechanisms underlying dynorphin-induced cell death have not been explored. To address this question, we examined the role of caspase-dependent apoptotic events in mediating dynorphin A (1-17) toxicity in embryonic mouse striatal neuron cultures. In addition, the role of opioid and/or glutamate receptors were assessed pharmacologically using dizocilpine maleate (MK(+)801), a non-equilibrium N-methyl-D-aspartate (NMDA) antagonist; 6-cyano-7-nitroquinoxaline-2,3-dione, a competitive alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate antagonist; or (-)-naloxone, a general opioid antagonist. The results show that dynorphin A (1-17) (>or=10 nM) caused concentration-dependent increases in caspase-3 activity that were accompanied by mitochondrial release of cytochrome c and the subsequent death of cultured mouse striatal neurons. Moreover, dynorphin A-induced neurotoxicity and caspase-3 activation were significantly attenuated by the cell permeable caspase inhibitor, caspase-3 inhibitor-II (z-DEVD-FMK), further suggesting an apoptotic cascade involving caspase-3. AMPA/kainate receptor blockade significantly attenuated dynorphin A-induced cytochrome c release and/or caspase-3 activity, while NMDA or opioid receptor blockade typically failed to prevent the apoptotic response. Last, dynorphin-induced caspase-3 activation was mimicked by the ampakine CX546 [1-(1,4-benzodioxan-6-ylcarbonyl)piperidine], which suggests that the activation of AMPA receptor subunits may be sufficient to mediate toxicity in striatal neurons. These findings provide novel evidence that dynorphin-induced striatal neurotoxicity is mediated by a caspase-dependent apoptotic mechanism that largely involves AMPA/kainate receptors.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.