-
- Sowmya M Ramaswamy, Merel H Kuizenga, Maud A S Weerink, Vereecke Hugo E M HEM Department of Anaesthesiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Anaesthesiolo, Struys Michel M R F MMRF Department of Anaesthesiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Basic and , and Sunil B Nagaraj.
- Department of Anaesthesiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. Electronic address: s.muchukunte.ramaswamy@umcg.nl.
- Br J Anaesth. 2019 Oct 1; 123 (4): 479-487.
BackgroundSedation indicators based on a single quantitative EEG (QEEG) feature have been criticised for their limited performance. We hypothesised that integration of multiple QEEG features into a single sedation-level estimator using a machine learning algorithm could reliably predict levels of sedation, independent of the sedative drug used.MethodsIn total, 102 subjects receiving propofol (N=36; 16 male/20 female), sevoflurane (N=36; 16 male/20 female), or dexmedetomidine (N=30; 15 male/15 female) were included in this study of healthy volunteers. Sedation level was assessed using the Modified Observer's Assessment of Alertness/Sedation (MOAA/S) score. We used 44 QEEG features estimated from the EEG data in a logistic regression algorithm, and an elastic-net regularisation method was used for feature selection. The area under the receiver operator characteristic curve (AUC) was used to assess the performance of the logistic regression model.ResultsThe performances obtained when the system was trained and tested as drug-dependent mode to distinguish between awake and sedated states (mean AUC [standard deviation]) were propofol=0.97 (0.03), sevoflurane=0.74 (0.25), and dexmedetomidine=0.77 (0.10). The drug-independent system resulted in mean AUC=0.83 (0.17) to discriminate between the awake and sedated states.ConclusionsThe incorporation of large numbers of QEEG features and machine learning algorithms is feasible for next-generation monitors of sedation level. Different QEEG features were selected for propofol, sevoflurane, and dexmedetomidine groups, but the sedation-level estimator maintained a high performance for predicting MOAA/S independent of the drug used.Clinical Trial RegistrationNCT02043938; NCT03143972.Copyright © 2019 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.