-
- S K Brandt, M E Weatherly, L Ware, D M Linn, and C L Linn.
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
- Neuroscience. 2011 Jan 13; 172: 387-97.
AbstractIn the mammalian retina, excitotoxicity has been shown to be involved in apoptotic retinal ganglion cell (RGC) death and is associated with certain retinal disease states including glaucoma, diabetic retinopathy and retinal ischemia. Previous studies from this lab [Wehrwein E, Thompson SA, Coulibaly SF, Linn DM, Linn CL (2004) Invest Ophthalmol Vis Sci 45:1531-1543] have demonstrated that acetylcholine (ACh) and nicotine protects against glutamate-induced excitotoxicity in isolated adult pig RGCs through nicotinic acetylcholine receptors (nAChRs). Activation of nAChRs in these RGCs triggers cell survival signaling pathways and inhibits apoptotic enzymes [Asomugha CO, Linn DM, Linn CL (2010) J Neurochem 112:214-226]. However, the link between binding of nAChRs and activation of neuroprotective pathways is unknown. In this study, we examine the hypothesis that calcium permeation through nAChR channels is required for ACh-induced neuroprotection against glutamate-induced excitotoxicity in isolated pig RGCs. RGCs were isolated from other retinal tissue using a two step panning technique and cultured for 3 days under different conditions. In some studies, calcium imaging experiments were performed using the fluorescent calcium indicator, fluo-4, and demonstrated that calcium permeates the nAChR channels located on pig RGCs. In other studies, the extracellular calcium concentration was altered to determine the effect on nicotine-induced neuroprotection. Results support the hypothesis that calcium is required for nicotine-induced neuroprotection in isolated pig RGCs. Lastly, studies were performed to analyze the effects of preconditioning on glutamate-induced excitotoxicity and neuroprotection. In these studies, a preconditioning dose of calcium was introduced to cells using a variety of mechanisms before a large glutamate insult was applied to cells. Results from these studies support the hypothesis that preconditioning cells with a relatively low level of calcium before an excitotoxic insult leads to neuroprotection. In the future, these results could provide important information concerning therapeutic agents developed to combat various diseases involved with glutamate-induced excitotoxicity.Published by Elsevier Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.