• Neuroscience · Sep 2019

    Identification of Altered Metabolic Pathways during Disease Progression in EAE Mice Via Metabolomics and Lipidomics.

    • Gakyung Lee, Mahbub Hasan, Oh-Seung Kwon, and Jung Byung Hwa BH Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science.
    • Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST-School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea. Electronic address: h17501@kist.re.kr.
    • Neuroscience. 2019 Sep 15; 416: 74-87.

    AbstractMultiple sclerosis (MS) is a demyelination disease that causes gradual damage to neurons. Despite the necessity of appropriate treatments at each disease stage to prevent the worsening of the damage, it is still difficult to cure MS. In this study, metabolomics and lipidomics studies were performed with time-course plasma samples (early, peak, chronic phase for MS) to elucidate the mechanism during MS progression after induction of experimental autoimmune encephalomyelitis (EAE), which is the animal model for multiple sclerosis (MS). Plasma samples were analyzed using ultra-high performance liquid chromatography-orbitrap-mass spectrometry (UHPLC-Orbitrap-MS) and metabolic changes were observed using multivariate analysis. We also measured the activity of NADPH and MMP-9 to evaluate the degree of the inflammation during the disease progression. As a result, 49 metabolites, which had significant differences either at each time point or with time-course changes between control (CTL) and EAE groups, were identified. Among them, glycerophospholipids and fatty acyls were downregulated during disease progression compared with the CTL group. However, glycerolipids, taurine-conjugated bile acids (BAs), and sphingolipids exhibited the reverse pattern. These metabolic changes were accompanied by increases in oxidative stress and immune response upon observing the changes in the activities of NADPH oxidase and MMP-9. In particular, 26 metabolites showed significant differences at specific stages. The metabolite level of the plasma was significantly altered in response to the EAE pathogenesis, and these changes were related to inflammation status at each disease stage. This study can provide crucial information for reducing damage by differentiating treatment strategies according to disease progression.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.