• J Biomech Eng · Oct 2010

    Ballistic impact of single particles into gelatin: experiments and modeling with application to transdermal pharmaceutical delivery.

    • R A Guha, N H Shear, and M Papini.
    • Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria St., Toronto, ON, Canada.
    • J Biomech Eng. 2010 Oct 1; 132 (10): 101003.

    AbstractThe impact and penetration of high speed particles with the human skin is of interest for targeted drug delivery by transdermal powder injection. However, it is often difficult to perform penetration experiments on dermal tissue using micron scale particles. To address this, a finite element model of the impact and penetration of a 2 μm gold particle into the human dermis was developed and calibrated using experiments found in the literature. Using dimensional analysis, the model was linked to a larger scale steel ball-gelatin system in order to extract key material parameters for both systems and perform impact studies. In this manner, an elastic modulus of 2.25 MPa was found for skin, in good agreement with reported values from the literature. Further gelatin experiments were performed with steel, polymethyl methacrylate, titanium, and tungsten carbide balls in order to determine the effects of particle size and density on penetration depth. Both the finite element model and the steel-gelatin experiments were able to predict the penetration behavior that was found by other investigators in the study of the impact of typical particles used for vaccine delivery into the human dermis. It can therefore be concluded that scaled up systems utilizing ballistic gelatins can be used to investigate the performance of transdermal powder injection technology.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.