• Neuroscience · Sep 2019

    Hyperexcitability in Cultured Cortical Neuron Networks from the G93A-SOD1 Amyotrophic Lateral Sclerosis Model Mouse and its Molecular Correlates.

    • Stefania Marcuzzo, Benedetta Terragni, Silvia Bonanno, Davide Isaia, Paola Cavalcante, Cristina Cappelletti, Emilio Ciusani, Ambra Rizzo, Giulia Regalia, Natsue Yoshimura, Giovanni Stefano Ugolini, Marco Rasponi, Giulia Bechi, Massimo Mantegazza, Renato Mantegazza, Pia Bernasconi, and Ludovico Minati.
    • Neurology IV -Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy. Electronic address: stefania.marcuzzo@istituto-besta.it.
    • Neuroscience. 2019 Sep 15; 416: 88-99.

    AbstractAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting the corticospinal tract and leading to motor neuron death. According to a recent study, magnetic resonance imaging-visible changes suggestive of neurodegeneration seem absent in the motor cortex of G93A-SOD1 ALS mice. However, it has not yet been ascertained whether the cortical neural activity is intact, or alterations are present, perhaps even from an early stage. Here, cortical neurons from this model were isolated at post-natal day 1 and cultured on multielectrode arrays. Their activity was studied with a comprehensive pool of neurophysiological analyses probing excitability, criticality and network architecture, alongside immunocytochemistry and molecular investigations. Significant hyperexcitability was visible through increased network firing rate and bursting, whereas topological changes in the synchronization patterns were apparently absent. The number of dendritic spines was increased, accompanied by elevated transcriptional levels of the DLG4 gene, NMDA receptor 1 and the early pro-apoptotic APAF1 gene. The extracellular Na+, Ca2+, K+ and Cl- concentrations were elevated, pointing to perturbations in the culture micro-environment. Our findings highlight remarkable early changes in ALS cortical neuron activity and physiology. These changes suggest that the causative factors of hyperexcitability and associated toxicity could become established much earlier than the appearance of disease symptoms, with implications for the discovery of new hypothetical therapeutic targets.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…