• Neuroscience · Sep 2013

    Characterising effects of impact velocity on brain and behaviour in a model of diffuse traumatic axonal injury.

    • E B Yan, V P A Johnstone, D S Alwis, M-C Morganti-Kossmann, and R Rajan.
    • Department of Physiology, Monash University, Monash, VIC 3800, Australia.
    • Neuroscience. 2013 Sep 17;248:17-29.

    AbstractThe velocity of impact between an object and the human head is a critical factor influencing brain injury outcomes but has not been explored in any detail in animal models. Here we provide a comprehensive overview of the interplay between impact velocity and injury severity in a well-established weight-drop impact acceleration (WDIA) model of diffuse brain injury in rodents. We modified the standard WDIA model to produce impact velocities of 5.4, 5.85 and 6.15 m/s while keeping constant the weight and the drop height. Gradations in impact velocity produced progressive degrees of injury severity measured behaviourally, electrophysiologically and anatomically, with the former two methods showing greater sensitivity to changes in impact velocity. There were impact velocity-dependent reductions in sensorimotor performance and in cortical depth-related depression of sensory cortex responses; however axonal injury (demonstrated by immunohistochemistry for β-amyloid precursor protein and neurofilament heavy-chain) was discernible only at the highest impact velocity. We conclude that the WDIA model is capable of producing graded axonal injury in a repeatable manner, and as such will prove useful in the study of the biomechanics, pathophysiology and potential treatment of diffuse axonal injury.Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.